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We present a deductive theory of space-time which is realistic, objective, and
relational. It is realistic because it assumes the existence of physical things
endowed with concrete properties. It is objective because it can be formulated
without any reference to knowing subjects or sensorial fields. Finally, it is
relational because it assumes that space-time is not a thing, but a complex of
relations among things. In this way, the original program of Leibniz is
consummated, in the sense that space is ultimately an order of coexistents, and
time is an order of successives. In this context, we show that the metric and
topological properties of Minkowskian space-time are reduced to relational
properties of concrete things. We also sketch how our theory can be extended to
encompass a Riemannian space-time.

1. INTRODUCTION

Space-time is a primitive (i.e., nonderivable) concept in every physical
theory. Even so-called space-time theories like general relativity do not deal

with the nature of space-time, but with its geometrical structure. The question

ª What is space-time?º precedes the formulation of any specific physical

theory, and belongs to ª protophysicsº (i.e., the branch of scientific ontology

concerned with the basic assumptions of physics).

The ontological status of space-time has been a particular subject of
debate for physicists and philosophers during the last 400 years. The kernel

of this debate has been the confrontation of two antagonic positions: absolut-

ism and relationalism. The former considers space-time as much a thing as

planets and electrons, i.e., space-time would be a physical entity endowed

with concrete properties. This is the position held by Newton in his renowned
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discussion with Leibniz (mediated by S. Clarke; see Alexander, 1983), and

also by J. Wheeler in the geometrodynamical approach to physics (e.g.,
Misner et al., 1973). Relationalism instead asserts that space-time is not a
thing, but a complex of relations among physical things. In Leibniz’ s words:

ª I have said more than once, that I hold space to be something merely relative,

as time is; that I hold it to be an order of coexistents, as time is an order of

successionsº (Alexander, 1983).

An important consequence of Leibniz’ s ideas is that, if space-time is

not an ontological primitive, then it should be possible to construct it starting
from a deeper ontological level. That is, the spatiotemporal relations should

be definable from more fundamental relations. There have been several

attempts to demonstrate the relational nature of space-time, both subjectivistic

and phenomelogical (e.g., Carnap, 1928; Basri, 1966) and objective and

realistic (Bunge and Garcõ Âa Maynez, 1977; Bunge, 1977). We think that a

deductive theory of space-time cannot be built with blocks that are alien to
physical discourse (such as knowing subjects or sensorial fields) in order to

be compatible with contemporary physical theories. In this sense, we agree

with Bunge’ s approach, which only assumes presuppositions common to the

entire physical science (Bunge, 1977).

We present here a new formulation, realistic and objective, of the rela-
tional theory of space-time, based on the scientific ontology of Bunge (1977,

1979). The theory will be displayed as an axiomatic system, in such a way

that its structure will turn out to be easily analyzable.4 The construction of

the theory rests on the notion of interaction among basic things, and on the

notion of simultaneity.

At this point, we should mention that the search for a quantum theory
of gravity has triggered intense research on the nature of space-time (for an

exhaustive review, see Gibbs, 1996). The aim of this research is to build a

theory (ª pregeometryº ) from which all the ª propertiesº of space-time (like

continuity and dimensionality) can be explained.5 This kind of pregeometry

should be the consequence of the unavoidable merging of quantum mechanics

and general relativity at very small distances. We emphasize that the pregeom-
etry we propose here is valid only for lengths above a minimum length,

which is suggested to be the Planck length by arguments based on the (yet

unborn) theory of quantum gravity (Garay, 1995).

The structure of the paper is as follows: in Section 2 we offer a brief

account of the main ontological assumptions of the theory. Section 3 contains

some formal tools, such as uniform spaces, to be used later. The axiomatic

4 On the advantages of the axiomatic method see Perez Bergliaffa et al. (1993) and refer-
ences therein.

5 Recall that, according to our view, space-time is not a thing. Consequently, it cannot have
properties.
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core is presented in Section 4. Finally, in Section 5 we give a short sketch

of an extension of these ideas to Riemannian space-times, we compare our

theory with the theory of Bunge (1977), and we close with some observations
on the nature of space-time.

2. ONTOLOGICAL BACKGROUND

In this section we give a brief synopsis of the ontological presuppositions

that we take for granted in our theory. For details see Bunge (1977, 1979)

and Perez-Bergliaffa et al. (1996). The basic statements of the ontology can

be formulated as follows:

1. There exist concrete objects named things. The set of all things is

denoted by Q .

2. Things can juxtapose ( 1 Ç ) and superimpose ( 3 Ç ) to give new things

according to the following definitions:
(a) A thing x is a physical sum or juxtaposition (denoted by 1 ) of all

the individuals of a given set {xi} iff every part of x is a part of at least one

of the members of the set. Example: the juxtaposition of an electron and a

proton yields a hydrogen atom.

(b) A thing x is a physical product or superposition (denoted by 3 ) of

all the individuals of a given set {xi} iff every part of x is a part of every
member of the set. Example: the superposition of two electromagnetic fields

yields another electromagnetic field.

3. The null thing L is a fiction introduced in order to give the structure

of Boolean algebra to the laws of composition of things:

x 1 Ç L 5 x

x 3 Ç L 5 L

4. Two things are separated if they do not superimpose:

x Ð y Û x 3 Ç y 5 L

5. Let T be a set of things. The aggregation of T (denoted [T ]) is the
supremum of T with respect to the operation 1 Ç .

6. The world (M) is the aggregation of all things:

M 5 [ Q ] Û (x | M Û x P Q )

where the symbol | means `is part of.’ It stands for a relation between
concrete things and should be not mistaken with ` P ’ , which is a relation

between elements and sets (i.e., abstract entities).

7. All things are composed of basic things x P J , Q by means of

juxtaposition or superimposition. The basic things are elementary or primitive:
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(x, y P J ) Ù (x | y) Þ x 5 y

8. All things have properties P. These properties can be intrinsic or

relational.

9. The state of a thing is a set of functions from a domain of reference

M to the set of properties 3. The set of accessible states of a thing x is the

lawful state space of x: SL(x). The state of a thing is represented by a point

in SL(x).
10. A law statement is a restriction upon the state functions of a given

class of things. A natural law is a property represented by an empirically

corroborated legal statement.

11. The history h(x) of a thing x is the part of SL(x) defined by

h (x) 5 { ^ t, F (t) & | t P M }

where t is an element of some auxiliary set M, and F are the functions that

represent the properties of x.

12. Two things interact if each of them modifies the history of the other:

x x v y Û h (x 1 y) Þ h (x) ø h (y)

13. A thing xf is a reference frame for x iff (i) M equals the state space

of xf, and (ii) h (x 1 Ç f ) 5 h (x) ø h (f )

14. A change of a thing x is an ordered pair of states:

(s1, s2) P EL(x) 5 SL(x) 3 SL(x)

A change is called an event, and the space EL(x) is called the event space of x.
15. An event e1 precedes another event e2 if they compose to give e3

P EL(x):

e1 5 (s1, s2) Ù e2 5 (s2, s3) Þ e3 5 (s1, s3)

The ontology sketched here (due mainly to M. Bunge) is realistic,

because it assumes the existence of things endowed with properties, and
objective, because it is free of any reference to knowing subjects.

We will base the axiomatic formulation of the pregeometry of space-

time on this ontology and on the formal tools that will be described in

the following.

3. FORMAL TOOLS

3.1. Topological Spaces

We give here just a brief review; for details the reader is referred to

Thron (1966) and references therein.
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D1. 3(A ) 5 Df {X /X , A} is the power set of the set A.

D2. Let A be a set. A subset ] of 3(A) is a topology on A if :

1. é P ], A P ]
2. If Ai P ], i P [i1, . . . , in], then ø n

i 5 1 Ai P ]
3. If Ai P ], i P [i1, . . . , in], then ù n

i 5 1 Ai P ]

The elements of ] are usually known as the open sets of A. The pair
(A, ]) is called a topological space. The elements of A on which a topology

] is defined are the points of the space (A, ]).

D3. A family @ P 3(A) is a base iff the family ] of all unions of

elements of @ is a topology on ø {B/B P @}. It is said then that ] is the

topology generated by @.

3.2. Filters

D4. A nonempty family @ of subsets of a set A is a filter on A iff :

1. (A1 P ^ Ù A2 P ^ Þ A1 ù A2 P ^)

2. B . A P ^ Þ B P ^
3. é ¸ ^

D5. A nonempty family B of subsets of a set A is called a filter base
on A provided B does not contain the empty set and provided the intersection

of any two elements of B contains an element of B

3.3. Uniform Spaces

D6. A nonvoid family L of subsets of A 3 A is a uniformity on A iff

1. L . n , where n 5 {(x, y)/x P A Ù y P A Ù x 5 y} for all L P L
2. C . L P L implies C P L
3. L1, L2 P L « L1 ù L2 P L
4. L P L « L 2 1, where L 2 1 5 {(x, y)/( y, x) P L} P L
5. For all L P L there exists a K P L such that K + K , L, where

K + K 5 {(x, y)/ $ z [(x, z) P K Ù (z, y) P K }

D7. The pair (A, L ) is called a uniform space.

D8. (A, L ) is called a separated (or Hausdorff) uniformity iff ù L P L 5 D

Remark. Notice that a uniformity is a filter on A 3 A each element of

which contains D . Property 4 is a symmetry property, whereas property 5 is

an abstract version of the triangle inequality.
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D9. A set B is called everywhere dense in a set A iff B (the closure of

B) . A.

D10. A topological space (X, t ) is separable iff there exists an every-

where dense subset of X which is denumerable.

D11. A filter ^ in a uniform space (A, L ) is called a Cauchy filter iff,

given L P L , there exists an M P ^ such that M 3 M , L. A uniform

space is complete iff every Cauchy filter has a limiting point.

T1. Every separated uniform space has a completion. That is, one can

always add ª ideal elementsº to complete the space.

Proof. See Thron (1966), pp. 184±185.

3.4. Metric Spaces

D12. Let X be a set. A function d: X 3 X j R + is a metric on X iff :

1. d (x, y) 5 0 Þ x 5 y for all x, y P X
2. x 5 y Þ d (x, y) 5 0 for all x, y P X
3. d (x, y) 5 d ( y, x) for all x, y P X
4. d (x, y) 1 d ( y, z) $ d (x, z) for all x, y, z P X

D13. The pair (X, d ) is a metric space.

T2 (Theorem of metrization). A uniform space is metrizable if and only

if it is separable and its uniformity has a numerable base (Kelley, 1962).

T3 (Theorem of isometric completion). Any metric space is isometric

to a subspace dense in a complete metric space (Kelley, 1962).

T4. Let S be a subset of X and let (X, *) be a uniform space. Then the
family *S 5 {H ø (S 3 S)/H P *} is a uniformity on S (called the relativized

uniformity), and t *s 5 ( t *)S.

4. AXIOMATICS

We present now the axiomatic core of our formulation. The generating

basis of primitive concepts is

B 5 { J , 3, SL, Eo, EG, Tu, 1 Ç , 3 Ç , # , c}

The different symbols are characterized by the ontological background

(Section 2) and a set of specific axioms. We shall classify these axioms into

ontological (o), formal (f), and semantical (s), according to their status in

the theory.
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A1. (o) For each x P J there exists a single ordering relation:

s1 # s2 Û s2 5 g(s1)

where g: SL ® SL is a law statement.

A2. (s) The set of lawful states of x, SL(x), is (temporally) ordered by

the relation # .

D14. s1 # s2 Û s1 precedes (temporally) s2.

Remark. The relation # is a partial order relation: there are states that

are not ordered by # (e.g., given the initial conditions x0, v0, there are states

which are characterized by the values of x and v that cannot be reached by

a classical particle).

D15. A subset of SL(x) totally ordered by the relation # is called a

proper history of x.

A3. (o) For each thing x, there exists one and only one proper history.

A4. (o) If the entire set of states of an ontological history is divided into

two subsets hp and hf such that every state in hp temporally precedes any

state in hf, then there exists one and only one state s0 such that s1 # s0 #
s2, where s1 P hp and s2 P hf. In symbols:

( " s1)hp( " s2)hf(s1 # s2)( $ s0)(s1 # s0 # s2)

Remark. This axiom expresses the notion of ontological continuity.

D16. hp is called the past of s0, and hf is called the future of s0.

Remark. Notice that past and future are meaningful concepts just when
they are referred to a given state s0.

A5. (o) For every thing x, there exists another thing xt called a clock,

and an injective application c such that:

1. c t: SL(xt) ® SL(x)

2. Given t, t8 P SL (xt): t # t8 Þ c (t) # c (t8)

T5. Given a thing x with ontological history h (x) and an arbitrary system

of units U t there exists a bijection

7: h 3 U t % R

that gives a parametrization sx 5 sx( t ).

Proof. From A3, A4, and Rey Pastor et al. (1952).

D17. The variable t is called the proper time of x.
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T6. Let xt be a clock for x, with event space EL(xt), and U t an arbitrary

system of units. There exists a bijection

T: EL(xt) 3 Ut % R

that provides a parametrization s 5 s ( t ).

Proof. Generalization of T5.

D18. t is the duration of an event of x relative to the clock xt.

This is all we need to say about time. For more details, see Bunge (1977).

A6:

( " x)(x | M)( $ y)( y | M Ù y x v x)

Remark. This axiom states that there exist no completely isolated things.

We shall now show that the relation of interaction x v (see Section 2),

generalized in a convenient way, induces a uniform structure (see Section 3)

on the set of basic things. It is important to note that the relation x v is

symmetric, but neither reflexive nor transitive. However, it is always possible
to define a reflexive-transitive closure of a given relation (Salomaa, 1973).

The closure x v * of the relation of interaction is the set of pairs of basic

things that interact either directly or by means of a chain (finite or infinite)

of basic things.

Now the following theorem can be proved:

T7. The relation x v * defines a uniform structure on J .

Proof. Every equivalence relation defines a uniform structure on a set

(Thron 1966).

Remark. Armed with this theorem, we will be able to endow space with

a uniform structure.

In order to introduce the concept of space, we shall use the notion of
reflex action between two things. Intuitively, a thing x acts on another thing

y if the presence of x disturbs the history of y. Events in the real world seem

to happen in such a way that it takes some time for the action of x to propagate

up to y. This fact can be used to construct a relational theory of space aÁ la

Leibniz, that is, by taking space as a set of equitemporal things. It is necessary

then to define the relation of simultaneity between states of things.
Let x and y be two things with histories h (x t ) and h( y t ), respectively,

and let us suppose that the action of x on y starts at t 0
x. The history of y will

be modified starting from t 0
y. The proper times are still not related, but we

can introduce the reflex action to define the notion of simultaneity. The action
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of y on x, started at t 0
y, will modify x from t 1

x on. The relation ª the action

of x is reflected on y and goes back to xº is the reflex action. Historically,

Galilei (1945) introduced the reflection of a light pulse on a mirror to measure
the speed of light. With this relation we will define the concept of simultaneity

of events that happen in different basic things (see also Landau and Lif-

shitz 1967).

We have already seen in Section 2 that a thing x acts upon a thing y if

the presence of x modifies the history of y:

x x y 5 Df h ( y | x) Þ h ( y)

where h ( y | x) represents the history of y in the presence of x.

The total action of x upon y is

!(x, y) 5 h ( y | x) ù h ( y)

where the bar designates the complement.

Let us now define the history of x after t 0
x as

h (x, t 0
x) 5 h (x) | t x . t 0

x

and similar definitions for h ( y, t 0
y) and for the history of y after t 0

y in the

presence of x after t 0
x, denoted here as h ( ^ y, t 0

y & , ^ x, t 0
x & ).

The total action of x after t 0
x on y after t 0

x is

!( y, x 0) 5 h ( y | x) ù h ( ^ y, t 0
y & , ^ x, t 0

x & )

In a similar way we define the action of y on x after t 1
y.

t 0
y is the minimum value of the proper time of y for which the action

of x after t 0
x is felt:

t 0
y 5 inf{ t y | !( y, x 0)}

This quantity always exists, because of the ontological continuity

assumed in A4.

Similarly, we define t 1
x:

t 1
x 5 inf{ t x | !(x, y 0)}

Finally we can introduce a relation between the three instants involved in

the reflex action. We will call 5 ^ t 0
x, t 0

y, t 1
x & the relation given by the set of

ordered 3-tuples and established by the previous equations.

Let us go back to the axiomatics.

A7. (o) Given two different and separated basic things x and y, there

exists a minimum positive bound for the interval ( t 1
x 2 t 0

x), defined by 5.

Remark. Hereafter we shall deal only with 3-tuples ^ t 0
x, t 0

y, t 1
x & that satisfy

the minimum condition.
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D19. t 0
y is simultaneous with t 1/2

x 5 Df (1/2)( t 0
x 1 t 1

x).

T8. t x and t y can be synchronized by the simultaneity relation.

Proof. There exists a bijection between t x and t y because 5 2 1, the

inverse of 5, is well defined.

Comment. As we know from general relativity, the simultaneity relation

is transitive only in special reference frames called synchronous (Landau and
Lifshitz, 1967). We then include the following axiom:

A8. (f) Given a set of basic things {x1, x2, . . .}, there exists an assignment

of proper times t 1, t 2, . . . such that the relation of simultaneity is transitive.

T9. The relation of simultaneity is an equivalence relation.

Proof. From T8 and A7.

Remark. We should mention that, because of T5 and D17, the history

of a given thing is parametrized by its proper time t . Then, the relation of
simultaneity is defined not over things, but over states of things.

D20. The equivalence class of states defined by the relation of simultane-

ity on the set of all basic things is the ontic space Eo.

T10. The ontic space Eo has a uniform structure.

Proof. Let S be a set of states of things related by the simultaneity

relation. Because of the uniqueness of the ontological history postulated in

A3, there is a one-to-one relation between a state in S and a given thing, and
then S is isomorphic to a subset of J . Then, by T4, S is a uniform space.

A9. There exists a subset D in the set of simultaneous states of interacting
things S that is denumerable and dense in S.

Remark. This axiom requires space to be a plenum. Indeed, this hypothe-

sis (introduced by Aristotle and later supported by Leibniz) is central to

quantum physics, and it permits the prediction of a plethora of vacuum

phenomena (such as the Casimir effect), in good agreement with observation.

A10. Each x P J interacts with a denumerable set of basic things.

T11. The power set of J reduced to the equivalence class is a basis for

the uniformity (Bourbaki, 1964).

So now we have the necessary and sufficient conditions for the metriza-

tion theorem.

T12. The ontic space is metrizable.
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Proof. Immediate, from T2.

D21. t u is the proper time of a reference thing xf.

T13. ( " x) * ( $ fx)( t x 5 f 2 1
x ( t u))

Proof. Immediate, from A5.

Remark. We shall call t u the universal time.

The ontic space E0 is still devoid of any geometric properties and

consequently cannot represent the physical space. We postulate then:

A11. (f) The metrization of the ontic space is given by

d (x, y) 5
1

2
c | t 1

x 2 t 0
x |

where c is a constant with appropriate dimensions, and the distance is evalu-

ated at t 0
y, which is simultaneous with t 1/2

x .

T14. The ontic space is isometric to a subspace dense in a complete space.

Proof. The proof follows immediately form the theorem of isometric

completion (T3).

D22. The complete space mentioned in T14 is called geometric space EG.

Remark. Because of the isometry mentioned in T14, EG inherits the

metric of Eo. Besides, note that every filter of Cauchy has a limiting point

in EG, because this space is complete.

D23. The elements of the completion are called ideal things.

Remark. It should be noted that the ideal things (which are abstract

objects) do not belong to the ontic space, but to the geometric space.

A12. (f) The points in EG satisfy the following conditions:

1. Given two points x and y, there exists a third point y aligned with x
and z.

2. There exist three nonaligned points.

3. There exist four noncoplanar points.

4. There exist only three spatial dimensions.6

Remark. All the conditions in A12 can be expressed in terms of the

distance d (a, b). For instance, condition 1 can be written in the form

6 This may not be true at the Planck scale, see, e.g., Tegmark (1997).
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( " (a))G( " (b))G( $ c)G(d(a, b) 1 d (b, c) 5 d (a, c) Ú (1)

d (a, c) 1 d (c, b) 5 d (a, b) Ú (2)

d (c, a) 1 d (a, b) 5 d (a, c)) (3)

For details, see Blumenthal (1965).

T15. The geometric space EG is globally Euclidean.

Proof. From A12; see Blumenthal (1965).

Remark. The ontic space Eo is not Euclidean, but dense on a Euclidean

space (i.e., EG). This is a consequence of the fact that a sequence of Cauchy
of things does not have in general a thing as a limit.

D24. Tu is the the bijection alluded to in T6 for the reference thing xf

with proper time t u.

T16. There exists a nontrivial geometric structure on EG 3 Tu.

Proof. Let us introduce a Cartesian coordinate system in EG, with origin

located in the reference thing xf. From T6, D19, and A11,

(ty 2 tx)
2 5 F d ( y, x)

c G
2

(4)

This equation describes a sphere of radius c dt centered at x. Then the

family of spheres S (x, tx) , EG 3 Tu defines a geometric structure on EG 3 Tu.

A13. (o) The cones of action determined by (4) are independent of the

reference thing xf.

T17. The quadratic form

ds2 5 (c dt)2 2 (d
-
r )2 (5)

is invariant under changes of the reference thing.

Cor. 1. EG 3 Tu has a Minkowskian structure.

T18. The only coordinate transformations that leave invariant the qua-

dratic form (5) are the Lorentz transformations.

A14. (s) EG 3 Tu represents physical space-time.

This axiom completes the formulation of the theory. It should be noted

that the spatial relations that we perceive are defined between macroscopic

(i. e., composed) things. Our system of axioms also can handle this situation

(which strictly does not belong to protophysics, but to physics) if we incorpo-
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rate a specific model for a given thing, which should be based on an explicit

form of the interaction between basic things.

5. FURTHER COMMENTS

5.1. Extension to Quantum Basic Things

The relational theory of space-time expounded in the preceding section

is based on the concept of basic thing. We should remark that this is a theory-

dependent concept, i.e., two different theories may take different sets of

things as basic. In this sense, our theory is classical (as opposed to quantum),
because T2 enforces the separability of basic things. However, it can be

conveniently modified to serve as a part of the protophysics of quantum

theories, and this we shall do in the following.

The main problem is the fact that quantum particles can superimpose

(i.e., the distance between two of them can be zero while the particles are
still distinguishable). To incorporate this fact, we shall relax D12, keeping

only items 2±4. With this modification, D12 defines a pseudometric instead

of a metric (Kelley, 1962).

Now we replace T2 with the following:

T19. (Theorem of pseudometrization). A uniform space is pseudometri-
zable if its uniformity has a denumerable base.

So, due to A10, Eo is pseudometrizable. Moreover, it can be completed:

T20. Every pseudometric space is isometric to a subspace dense in a

complete pseudometric space.

We shall call this last space Ep ( pregeometric space). But we know that

in quantum mechanics the Euclidean space is included in the corresponding
protophysics (Perez Bergliaffa et al., 1993). To recover Euclidean space, we

begin by introducing the concept of ontic point:

D25. Let X | J be a family of basic things. We say that X is a complete
family of partially superimposed things if

1. ( " x)X( " y)X(x 3 Ç )y Þ L)

2. ( " x)XÅ
( $ y)X(x Ð y)

We shall call this kind of family an ontic point, because the (pseudomet-
ric) distance between any two components of the family is zero.

A15. Let j and h be two ontic points. Then ( " xi) j ( " yj) h ( $ C ( j , h ))(dp(xi ,

yj) , C ( j , h )).
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D26. Let j and h be two ontic points. The distance between them is

given by

dG( j , h ) 5 Df sup(i, j)dp(xi , yj) (6)

with xi P j and yj P h .

Remark. The axiom A15 guarantees that this distance is well defined.

T21. The set of ontic points, together with the distance function (6), is

a metric space.

Proof. The items 2±4 of D12 are trivially satisfied because dp is a

pseudometric. Regarding the first item, if j and h are two ontic points, there

exist xi P j and yj P h such that xi Ð yj. The condition dp(xi , yj) . 0 is

satisfied because dp is a pseudometric. Then, j Þ h Þ dG( j , h ) . 0, which
can be written as dG( j , h ) 5 0 Þ j 5 h .

T22 (Theorem of isometric completion). Any metric space is isometric
to a subspace dense in a complete metric space (Kelley, 1962).

D27. The completion of the space of ontic points is the geometric

space EG.

From this point, the construction goes on as in the previous case.

5.2. Extension to Riemannian Spaces

Our theory is a pregeometry for a Minkowskian space time. Gravitational

physics, however, requires more complex structures. In this section we shall

sketch the necessary steps that lead to a Riemanian space, which is used in

general relativity (Covarrubias, 1993), in an informal way, avoiding the
technicalities.

A Riemannian space can be obtained from our theory using a tetrad

formulation. For this we need at least an axiom elucidating the connection

between ontic and geometric spaces:

A16. (f) The geometric space EG is the tangent space to the ontic space

at the reference thing xf.

With this axiom, the connection between ontic and geometrical spaces

will be purely local. The full space will be constructed by pasting together

patches of quasi-Euclidean pieces. The following axiom sketches the way

this can be done:

A17. (f) There exists a parallel displacement operator connecting the

components of vectors (i.e., elements of the tangent space) tangent to Eo on

neighboring things.
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With parallel displacement, a covariant derivative can be defined in the

usual way. The usual property of the Riemannian conection (Ricci coeffi-

cients) must be posited. The following axiom will do the job:

A18. (f) The covariant derivative ¹ annihilates the metric.

Since we are working with a transitive simultaneity relation (which is

equivalent to using a synchronous reference frame in any metric theory of

gravitation; Landau and Lifchitz, 1967) a Riemannian space will define a

unique pseudo-Riemannian spacetime. In this way a protophysics for a rigor-
ous formulation of general relativity (such as Covarrubias, 1993) and more

general theories of gravitation will be obtained.

The above scheme must be completed in several ways. Accurate defini-

tions should be given of the different constructs defined. Also, several axioms

should be introduced to ensure a differential manifold structure on a suitable
completition of the ontic space. We shall not pursue further this matter here,

but leave it to a future communication.

5.3. Comparison with Bunge’s Theory

As mentioned in the Introduction, protophysical theories can be parti-
tioned into subjective and objective, according to whether or not knowing

subjects and/or sensorial fields are considered as basic objects. Bunge (1977)

developed an objective and realistic relational theory of space time and made

a clear-cut comparison with other subjective and objective theories. In this

section, we shall limit ourselves to a comparison of the objective and realistic

theory of Bunge (1977) with the one developed in the present paper.
Bunge’ s theory of space is based on the interposition relation (x | y | z),

which can be read ª y interposes between x and zº . The properties of this

relation are posited in Axioms 6.1±6.6 of Bunge (1977). In this section

we shall show how the corresponding relation can be constructed in the

present theory.

We shall first define a similar relation between basic things.

D28. Let x, y, z P J . We shall say that [x | y | z] J if

(d (x, y) 1 d ( y, z) 5 d (x, z)) Ù (x Ð y Ð z Ð x) Ú (x 5 y 5 z))

The next theorem proves that in our theory, the interposition relation holds

between basic things if and only if it is valid in Bunge’ s theory:

T23. Let x, y, z P J . Then [x | y | z] J if (x | y | z).

Proof. The proof consists in showing that [x | y | z] J satisfies each of the

seven conditions (i)±(vii) of Axiom 6.1 in Bunge (1977).
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In order to define an interposition relation for general things, we shall

use our interposition relation for basic things:

D29. Let j , h , z P Q . Then [ j | h | z ] Q either if they are equal ( j 5 h 5
z ) or if there exist three separate basic things x, y, z P J that are parts of
one thing, but not of the others, and that interpose.

[ j | h | z ] Q 5 Df ( j 5 h 5 z ) Ú

$ (x, y, z P J ){[(x | j ) Ù (x Ð h ) Ù (x Ð z )] Ù

[( y | h ) Ù ( y Ð j ) Ù ( y Ð z )] Ù

[(z | z ) Ù (z Ð h ) Ù (z Ð j )] Ù

[x | y | z] J } (7)

T24. Let j , h , z P Q . Then [ j | h | z ] Q if ( j | h | z ).

In the same way, with appropriate definitions, it is possible to show that

the remaining postulates of Bunge’ s theory can be recovered as theorems in

our formulation.

The time theory exposed in the first part of our axiomatics is essentially

the same theory exposed in Bunge (1977), although our axioms are somewhat
different. The main differences lies in axiom 3 and 4. The first one, not

explicitly stated in Bunge (1977), forbids ª gardens of forking pathsº (Borges,

1967), or, in general, more than one timelike direction. The second axiom

may be taken as a reformulation of the Heraclitean principle, ª Panta rhei.º
From a formal point of view, the present theory of space-time is very

different from the theory in Bunge (1977). This is because our fundamental
relation of ª reciprocal actionº is very restrictive and the related axioms are

extremely strong: we are led almost without ambiguity to a Minkowskian

structure of space-time.

Finally, it is important to remark that, since both theories have the

same referents (namely, things and their properties), they are referentially

equivalent, realistic and objective relational theories of space and time.

5.4. The Nature of Space-Time

In the present theory, space-time is not a thing, but a substantial property

of the largest system of things, the world M, emerging from the set of the
relational properties of basic things. Thus, any existential quantification over

space-time can be translated into quantification over basic things. This shows

that space-time has no ontological independence, but is the product of the

interrelation between basic ontological building blocks. For instance, rather
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than stating ª space-time possesses a metric,º one should say, ª the evolution

of interacting things can be described attributing a metric tensor to their

spatiotemporal relationships.º In the present theory, however, space-time is
interpreted in an strictly materialist and Leibnizian sense: it is an order of

successive material coexistents.

6. SUMMARY

We have developed a materialist relational theory of space-time that

carries out the program initiated by Leibniz and provides a protophysical

basis consistent with any rigorous formulation of general relativity. Space-
time is constructed from general concepts which are common to any consistent

scientific theory. It is shown, consequently, that there is no need for positing

the independent existence of space-time over the set of individual things.
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